

UEG PUBLICATION UR29

Disposal of nuclear waste at sea

a review of development and industrial opportunities

UEG Publication UR29

DISPOSAL OF NUCLEAR WASTE AT SEA -

A REVIEW OF DEVELOPMENT AND INDUSTRIAL OPPORTUNITITES

Daniel A Spagni, Hugh M Cameron and Glyn J Ford

© CIRIA/UEG 1986

Price £40 (£8 to UEG Members)

ISBN 0 86017 244 9

ISSN 0268 2303

UEG 6 Storey's Gate Westminster London SWIP 3AU Telephone 01-222 8891

THE RESEARCH AND INFORMATION GROUP FOR THE UNDERWATER AND OFFSHORE ENGINEERING INDUSTRIES A PART OF CIRIA – THE CONSTRUCTION INDUSTRY RESEARCH AND INFORMATION ASSOCIATION

FOREWORD

This report has been prepared from a study on the subject produced under UEG Project 68, 'Users Group by the PREST Marine Resources Project at the University of Manchester'. The project is being undertaken by members of PREST (Programme of Policy Research in Engineering, Science and Technology) in the Department of Science and Technology Policy at the University of Manchester. It is funded by the Science and Engineering Research Council Marine Technology Directorate (68%), the Department of Trade and Industry (16%) and currently by six industrial organisations (16%), and is managed by UEG.

The project entails the production, over a period of 2 years, of twelve reports outlining the basic technology involved, current R & D, and the industrial opportunities of markets other than oil and gas. The subjects covered in the first year were:

Ocean thermal energy conversion Disposal of nuclear waste at sea Artificial islands Japan and new marine technology Phosphorite nodules Satellite remote sensing of the marine environment

The reports are being considered in draft by a project steering group, and published with their support and consent. In the first year of the project the group comprised:

UEG

British Shipbuilders John Brown Subsea Ltd Sir William Halcrow & Partners Imperial Chemical Industries plc Sir Robert McAlpine & Sons Ltd SERC Marine Technology Directorate Department of Trade and Industry Wimpey Laboratories Ltd

PREST Marine Resources Project Team

C Phipps-Jones D Smith J Simpson C N Beard D Kerr Dr S Mellows Dr P L Smith K Kershaw

R K Venables (Chairman)

Professor M Gibbons H Cameron Dr L Georghiou J Simnett D Spagni Dr A Toms

The report was prepared for the Users Group in the latter part of 1983 and has received only minor updating for this open publication. CONTENTS

	FOREWORD	Page 2	
	LIST OF TABLES	5	
	LIST OF FIGURES	6	
	LIST OF ABBREVIATIONS	8	
1	INTRODUCT I.ON	10	
2	THE NUCLEAR FUEL CYCLE AND THE GENERATION OF RADIOACTIVE WASTE		
	2.1 Radioactivity2.2 Radioactive waste : definitions2.3 Radioactive waste : sources2.4 Radioactive waste : disposal routes	11 13 14 21	
3	RADIOACTIVE WASTE MANAGEMENT IN THE UNITED KINGDOM	26	
	3.1 UK waste inventory3.2 UK radioactive management policy3.3 UK radioactive waste strategy	26 26 33	
4	SEA DUMPING OF SOLID LOW LEVEL RADIOACTIVE WASTE: PAST AND PRESENT PRACTICES	39	
	 4.1 United States 4.2 Japan 4.3 South Korea 4.4 United Kingdom 4.5 OECD/NEA 4.6 Dumping in practice 	39 40 40 40 40 44	
5	SEABED DISPOSAL OF HIGH LEVEL RADIOACTIVE WASTE	49	
	 5.1 The Multiple Barrier concept 5.2 Seabed disposal options 5.3 Investigation and selection of seabed disposal sites 5.4 Transport and port facilities 5.5 Penetrometers and canisters 	49 49 5 54 62 78	
6	INTERNATIONAL RULES AND REGULATIONS APPLICABLE TO THE SEA DISPOSAL OF RADIOACTIVE WASTE	A 80	
	6.1 Dumping 6.2 Seabed disposal	80 83	
7	SURVEY OF THE MAIN R & D PROGRAMMES ON THE DISPOSAL OF NUCLEAR WASTE AT SEA	89	
	7.1 United States7.2 United Kingdom7.3 OECD/NEA	89 89 92	

Page	

8	SUMMARY OF INDUSTRIAL OPPORTUNITIES	97
	REFERFINCES AND FOOTNOTES	9 8

÷."

4

UEG Publication UR29

LIST OF TABLES Page		
Table l	The various types of radiation	11
Table 2	Radioactive waste production in the nuclear fuel cycle: a US example	15
Table 3	Projected waste arisings from Stage 1 of the decommissioning of Sizewell 'B'	18
Table 4	Projected active waste arisings from Stage 2 of th decommissioning of Sizewell 'B'	le 19
Table 5	Projected active waste arisings from Stage 3 of th decommissioning of Sizewell 'B'	ie 20
Table 6	Geological research related to waste disposal	24
Table 7	Waste arising from commercial UK power reactors	27
Table 8	Waste arising from UK fuel fabrication and reprocessing	28
Table 9	Waste arising from nuclear and non-nuclear researc medical and industrial uses in the UK	h, 29
Table 10	Estimate of cumulative global and UK arisings of vitrified high-level waste, 1980, 1990 and 2000	30
Table 11	Disposal facilities justifying consideration in the UK	35
Table 12	Proportion of radioactive waste disposed at sea by the NEA countries emanating from the UK, 1966-1982	41
Table 13	Amount of waste disposed at sea by the UK, 1966-1982	41
Table 14	Summary of sea disposal operations in the north east Atlantic under OECD/NEA, 1967-1982	42
Table 15	Regulations and codes of practice governing the transport of radioactive material in the UK	76
Table 16	UK R & D expenditure on radioactive waste management 1978-79 to 1982-83	nt, 90
Table 17	Main research contracts on the sea disposal of radioactive waste funded by the UK Department of the Environment, 1981-82	91

Disposal of nuclear waste at sea

*د*۴,

LIST OF	FIGURES	Pa	age
Figure	1	The essential features of uranium fission	12
Figure	2	The nuclear fuel cycle	16
Figure	3	Disposal of low-level radioactive waste in the former Asse salt mine in the Federal Republic of Germany	22
Figure	4	Shallow burial of low activity waste at Cap de la Hague, France	22
Figure	5	Low level reactor waste stored at the Muhleberg nuclear power plant in Switzerland	23
Figure	6	Relationship between bodies dedicated to NIREX activities and other bodies in the structure for radioactive waste management in the UK	33
Figure	7	Responsibility for nuclear health, safety and protection of the environment in the UK	34
Figure	8	Outline UK programme for the development of disposal facilities	36
Figures	9 & 10	Deep ocean disposal of low-level radioactive waste from nuclear establishments in the United Kingdom.	37
Figure	11	Committee structure of the NEA for the Management of radioactive waste	43
Figure	12	Map of the OECD/NEA dumping area in the north east Atlantic	45
Figure	13	Radioactive residues incorporated homogeneously in a metal container	46
Figure	14	Solid waste incorporated into a concrete matrix in a metal container	46
Figure	15	Radioactive residues incorporated homogeneously in a metal container closed with a concrete cap	46
Figure	16	Solid waste placed, after boiling, in a metal container, lined and filled with concrete	46
Figure	17	Drum filled with solid or solidified waste, placed in a metal container with concrete lining and cap	47
Figure	18	Solid waste incorporated into a metal drum placed within a concrete container	47

Figure	19	Barriers and transport media - sub-seabed	Page
riguie	Т У . *	disposal	50
Figure	20	Possible schema for a reference disposal system	52
Figure	21	Sub-seabed Disposal Programme - sediment penetrat emplacement concepts	tor 53
Figure	22	Sub-seabed Disposal Programme - drilled-hole emplacement concept	53
Figure	23	Platform for an in-situ heat transfer experiment (ISHTE)	55
Figure	24	Long core facility - penetrometer	56
Figure	25	Long core facility - stages in penetration	57
Figure	26	Map of the world showing boundaries of tectonic plates, and abyssal hill and swale regions	61
Figure	27	Atlantic research areas for disposal of high level radioactive waste	63
Figure	28	Seabed disposal transportation system	64
Figure	29	Irradiated fuel being delivered to BNFL Sellafield Works	64
Figure	30	Wet flask - Excellox transport flask	66
Figure	31	Dry flask - TN12 Mark I transport flask	66
Figure	32	Design of a 42 000 DWT chemical/product carrier	68
Figure	33	Proposed high-level waste (HLW) disposal ship	69
Figure	34	Plan view of the proposed HLW ship	70
Figure	35	Midship section of the proposed HLW ship	70
Figure	36	Structural member at midships in the proposed HLW ship	71
Figure	37	Shipboard storage pool for HLW penetrometers in the proposed HLW ship	71
Figure	38	Shipboard handling of HIW canisters in the proposed HIW ship	72
Figure	39	Plan view of the HLW ship's hot cell and storage pool	73
Figure	40	Penetrator (penetrometer) release mechanism	74
Figure	41	Reference waste emplacement package	79

LIST OF ABBREVIATIONS

AEC	Atomic Energy Commission (United States)
AGR	Advanced Gas-cooled Reactor
AVM	Atelier de Vitrification de Marcoule (France)
BNFL	British Nuclear Fuels Limited
CANDU	Canadian Deuterium Uranium Reactor
CEA	Commissariat a l'Energie Atomique (France)
CEGB	Central Electricity Generating Board (UK)
DOE	Department of the Environment (UK)
EEZ	Exclusive Economic Zone
EPA	Environmental Protection Agency (United States)
EURATOM	European Atomic Energy Community
FCO	Foreign and Commonwealth Office (UK)
GESAMP	Joint Group of Experts on the Scientific Aspects of Marine Pollution
HLW	High Level Waste
IAEA	International Atomic Energy Agency
ICRP	International Commission on Radiological Protection
ILW	Intermediate (or Medium) level waste
IMO	International Maritime Organisation (formerly IMCO)
INFCE	International Fuel Cycle Evaluation
IOS	Institute of Oceanographic Sciences (UK)
ISA	International Seabed Authority
ISHTE	In-situ Heat Transfer Experiment
LCF	Long Core Facility (United States)
LDC	London Dumping Convention (Convention on the Prevention of Marine Pollution by dumping of Wastes or other Matter (London, 1972)
LLW	Low-Level Waste
TWD	Light Water Peagtor

LWR Light Water Reactor

.

MAFF	Ministry of Agriculture, Fisheries and Food (UK)
MW	Megawatt
NEA	Nuclear Energy Agency of the OECD
NERC	Natural Environment Research Council (UK)
NIREX	Nuclear Industry Radioactive Waste Executive (UK)
NRPB	National Radiological Protection Board (UK)
OECD	Organisation for Economic Co-operation and Development
PWR	Pressurised Water Reactor
RWMAC	Radioactive Waste Management Advisory Committee (UK)
SDP	Sub-seabed Disposal Program (United States)
SSEB	South of Scotland Electricity Board (UK)
SWG	Seabed Working Group of the NEA
THORP	Thermal Oxide Reprocessing Plant (UK)
UKAFA	United Kingdom Atomic Energy Authority
UNCLOS I	First United Nations Conference on the Law of the Sea (Geneva, 1958)
UNCLOS III	Third United Nations Conference on the Law of the Sea (1973 - 1982)
UNTS	United Nations Treaty Series

.

INTRODUCTION

1

For many years, waste management received fairly low priority in the nuclear energy programme, but it is now an area which is attracting increasing interest from both government and industry.

The future of nuclear power in many countries hinges on the demonstration by the nuclear industry that the waste generated can be disposed of in an acceptable way. Even those countries which are abandoning nuclear power are faced with a considerable waste problem, as they need to dispose not only of large quantities of contaminated materials and spent fuel, but also of the fabric of their existing power stations.

Solutions to the problem of radioactive waste disposal will have to be found in the near future. Industry has a key role to play in the development and implementation of national strategies for the disposal of radioactive waste.

Those taking an early lead in the field are likely to be assured of a substantial worldwide market. This report has been prepared to review the state of the art, to review current developments and to identify industrial opportunities in the UK in the field of disposal of nuclear waste at sea.