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FOREWORD

This, the second edition of the Guidelines for the safe design and operation of shell and tube heat
exchangers to withstand the impact of tube failure contains major additions to the first edition. Both
first and second editions have been the result of joint industry projects (JIPs) managed by the Energy
Institute (El) and the former Institute of Petroleum (IP).

With shell and tube heat exchangers (STHEs) there is concern about the potential consequences of
a tube failure allowing high pressure (HP) fluid on one side to enter the low pressure (LP) fluid on
the other side. In the 1990s, with growing computer power and computer programming, some
companies were using dynamic simulation to test the consequences of tube rupture to provide input
to the design of the overpressure protection system. The IP formed a task group from which the first
JIP was set up to commission full scale experiments of tube ruptures within a heat exchanger. The
experiments investigated the pressures experienced by the heat exchanger, to which the accuracy of
the simulations was compared.

One conclusion from the first JIP was that the relief device opening time was critical for the exchanger
protection. At the time, only rupture discs had been reported to have fast opening times. As a
consequence many heat exchangers were protected against sudden tube rupture using rupture discs.
However, there have been a number of incidents in industry involving failure of these rupture discs on
heat exchangers that would not have been as serious if other devices, especially reseating pressure
relief valves (PRVs), had been used instead.

Consequently, the second JIP was set up to provide additional guidance and to perform additional
experiments to investigate the opening times of pressure relief and pin valves of the typical sizes
required to protect a heat exchanger. The second JIP included:

- Experiments with a larger shock tube and larger spring loaded safety valves than had
been tested before, as well as tests with a pin valve.

- Simulation of the tests performed to gain extra detail and information from the
measured results.

- A hazard and operability study (HAZOP) and hazard identification (HAZID) of typical
STHE installations.

- Development of guidance on tube vibration failure modes and calculation of vibration
potential.

- Simulations of heat exchanger tube rupture to compare the importance of different
design parameters on the overpressures experienced.

- A survey of operators’ experience with safety devices for overpressure protection of
STHEs.

- A literature search to gather information on additional heat exchanger incidents and
failure rate data.

- Using the results of the experiments and simulations to produce additional guidance
on the selection of overpressure protection device types and operating setpoint
specification.

- Using the HAZOP, HAZID and incidents to produce guidance on the design of
pipework and instrumentation.

"
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The output from the second JIP has led to these updated guidelines which, in particular, include:

Flow charts for the process and decisions for:
— overall design steps;

—  relief system design;

- relief device selection;

— decisions on instrumentation, and

— reassessment of existing heat exchangers.

Lists and outlines of past incidents involving failures with heat exchangers which can
be considered to mitigate against repeat incidents.

Further reliability statistics to aid quantitative risk assessments (QRAS).
Relative impacts of changes to design parameters of a heat exchanger.
Basis for analysing tube vibration.

An equation to provide an initial estimate of the step increase in pressure following
a tube rupture from which first approximation of the design pressure for the LP side
can be chosen.

Guidance on the issues to consider when designing the pipework connected to the
heat exchanger.

Discussion of the types of relief device available to protect the heat exchanger from
overpressure and guidance for the selection of the relief device.

Guidance on the location of the relief device relative to the heat exchanger and the
flare header.

Guidance for the specification of the set pressure of the relief device, taking into
account manufacturing tolerance.

Guidance on the software requirements and values to use when performing dynamic
simulation of a tube rupture.

Discussion on slug loads in the relief pipework as a result of opening of a relief device.

Guidance on the selection of instrumentation for the heat exchanger to detect tube
failure and to detect operation of the relief device.

Warning: It should be noted that if STHEs and associated relief systems are not designed correctly and
a failure occurs then the result could be serious damage to the exchanger and/or its associated piping
with potential consequential damage and/or injury.

The information contained in this publication is for guidance only, and while every reasonable care
has been taken to ensure the accuracy of its contents, the El, and its technical committees, cannot
accept any responsibility for any actions taken, or not taken, on the basis of this information. The
El shall not be liable to any person for any loss or damage that may arise from the use of any of the
information contained in any of its publications.
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1.1

INTRODUCTION

BACKGROUND

The process industries frequently require to heat or cool HP gas. The most common method
used has been in STHEs. The LP side of the exchanger, which contains a utility fluid such as
sea water, is therefore at risk in the event of any leakage from the HP side of the exchanger.
Such exchangers may have greatly differing operating pressures between the two fluids and
the designer has to consider several variables when choosing the optimum exchanger type,
selecting suitable materials, which fluid should be within the tubes and the design pressure
and temperature for each side of the exchanger. It has become common practice for the LP
side to be designed to withstand a pressure just above the operating or flow lock-in pressure
of the utility fluid, but well below the HP side’s operating pressure. There is a risk that tube
failure could lead to failure of the LP pressure envelope and the release of large quantities
of flammable gas. The LP side, therefore, should be protected against tube failure by fitting
relief devices such as rupture discs, pin valves or safety relief valves (RVs). The adequacy
of the methodology used to design the LP side to withstand the sudden release of HP gas
through tube rupture was not proven before the work performed for the first edition of these
guidelines. The consequences of such a failure can range from (at the worst) catastrophic
rupture of the LP side with considerable financial loss and risk to personnel, to satisfactory
release through the overpressure protection system.

Relief to relief system Relief to relief system

Isolation valve
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out
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Figure 1: Typical HP/LP STHE (Tubular Exchanger Manufacturers Association (TEMA)
type AEU)

The guidance in these guidelines is primarily for a heat exchanger where the HP gas is in the
tubes and the LP heating/cooling medium is in the shell. A typical HP/LP STHE configuration
is shown in Figure 1.
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1.2

1.3

SCOPE OF GUIDELINES

Although these guidelines are based on experiments and other studies where the HP fluid is
in the tubes, they are also suitable to form a basic approach for the alternate geometry where
the HP fluid is contained within the shell.

Typically, in the designs relevant to these guidelines, the LP side fluid (usually a utility),
operates at low pressures <15 barg, whilst the gas in the tubes may be at pressures ranging
from several times the utility pressure to orders of magnitude higher.

There are four main scenarios that could generate pressure above the normal operating
pressures within the utility side of the exchanger. These are thermal expansion, external
fire, tube failure or flow lock-in. However, the designer should identify all credible causes of
overpressure. These guidelines have been written to clarify the process industry’s approach
to designing for the tube failure scenario (which for HP services will usually be the most
onerous). They provide good practice for the engineers faced with decisions on the safe
design and operation of heat exchangers.

The experiments and studies upon which the guidelines are based were limited to applications
of HP single phase gas discharging into LP single phase liquids. Hence, they may not be fully
applicable to situations where multiple phases are present on either the tube or shell side
prior to a tube failure, or where phase changes occur during a tube failure event e.g. flashing
of the LP liquid phase.

The scope of the guidelines includes:

- heat exchanger including tubes and baffles;

- inlet heating/cooling medium pipe;

- exit heating/cooling medium pipe;

- relief devices,

- interface between the exchanger and relief devices;

- relief device tail pipes and impact on downstream disposal, and

- instrumentation for tube failure events and relief system operation.

APPLICATION

These guidelines are intended for process, mechanical and instrumentation engineers to use
when designing systems incorporating STHEs, when reviewing systems designed prior to
publication of these guidelines, or when the process conditions are to be changed that could
invalidate assumptions made in the system design.

This publication is based primarily on the UK and European legislative framework, but also
international publications (codes of practice, design standards, specifications, guidance,
etc.) and good practice. However, its guidance is universally applicable provided it is read,
interpreted and applied in conjunction with relevant national and local statutory legislation
and publications. Where the requirements differ, the more stringent should be adopted.

This publication adopts the notation of a comma for decimal mark (e.g. 4,2 mm) and a space
as separator for thousands (e.g. 2 000). Also, it largely aligns to relief device terminology
defined in API Std. 520 Part 1, except where there is uncertainty in what type of relief device
is under consideration (e.g. in old reports).
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These guidelines provide additional guidance and information for the safe design and
operation of STHEs, supplementing the design methodologies provided in various design
publications (e.g. standards (Stds), codes, etc.) such as:

- API Std 521: Pressure-relieving and depressuring systems

- API Std 660: Shell-and-tube heat exchangers

- ASME Section VIII Division 1 and 2: ASME boiler and pressure vessel code
- EN 13445 Unfired pressure vessels

- PD 5500: Specification for unfired pressure vessels

- TEMA: Standards of the Tubular Exchanger Manufacturers' Association

Where the heat exchanger is being designed to one or more of these standards, these
guidelines are applicable internationally. If operating outside of the UK the legislation
applicable will differ from that listed in 1.4, in which case local legislation should be applied.

Section 2 describes issues with the design of STHEs for tube failure events. Past failures
are described and incident statistics are presented. This all forms a background as to why
the risk of tube failure should be considered and some of the issues to be considered in
improving the safe design and operation of these heat exchangers.

Section 3 provides guidelines for the design of the heat exchanger and associated LP inlet and
exit pipework. Section 4 provides guidelines on the pressure relief system design to protect
the exchanger in the event of a tube rupture. Dynamic simulation of tube rupture in heat
exchangers is covered in section 5 and section 6 describes the options for instrumentation of
the heat exchanger for detecting a tube failure event and detection of relief device operation.
Section 7 includes guidance for the management of the heat exchanger once it is in operation.

The suggested design process, shown in Figure 2, is to first select the required heat
exchanger type, then design the heat exchanger followed by the relief system. The
design should then be checked for the consequences of tube rupture, maybe using
dynamic simulation. If excessive pressures are predicted then the heat exchanger design
should be reconsidered. If the design cannot be changed then it may be possible to
change the design pressure of the LP side. Failing that, the relief system design should
be modified. Once a suitable design is finalised the instrumentation can be added.

For existing heat exchangers, especially those designed before the first edition of these
guidelines, the process in Figure 3 is suggested. On a periodic basis, the process hazards
associated with the heat exchanger should be reviewed (see section 7). If the design
publications have changed since the previous review then an investigation into the effects
of tube rupture should be considered. If the analysis determines excessive pressures in
the LP side as a result of tube rupture then the changes to LP side design pressure should
be investigated. If that is not possible the modifications to the relief system should be
investigated. If that is not possible then replacement of the heat exchanger should
be considered.
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