
Probability-based fatigue inspection planning

THE MARINE TECHNOLOGY DIRECTORATE LIMITED

ABOUT MTD LTD

The Marine Technology Directorate Limited (MTD Ltd) aims to promote, develop and advance, in the national interest, research, training and information dissemination in marine technology, including all aspects of engineering, science and technology relating to the exploration and exploitation of the sea.

MTD Ltd is an association of members having interests and capabilities in marine-related technology. They include industry, government, research establishments, academic and other learned institutions, and the Science and Engineering Research Council (SERC).

MTD Ltd advances marine research and development, primarily by means of its research activities in Higher Education Institutes and partly funded by SERC. MTD Ltd also provides an interface between such research and the requirements and expertise of its members. Since its absorption of UEG, the research and information group for the offshore and underwater engineering industries, MTD Ltd has expanded its interests to include multi-sponsor projects.

For further details, contact:

The Secretary
The Marine Technology Directorate Limited
19 Buckingham Street, London WC2N 6EF
Telephone 071-321 0674
Facsimile 071-930 4323

Probability-based fatigue inspection planning

© MTD Ltd 1992 ISBN 1 870553 08 X

THE MARINE TECHNOLOGY DIRECTORATE LIMITED

FOREWORD

一个不少的大人

This report results from one of seven individual projects that made up a major joint industry programme on underwater inspection of steel offshore structures. The programme was initiated by UEG and transferred to MTD Ltd as a part of the takeover arrangements. The overall report from the programme: "Underwater Inspection of Steel Offshore Installations: implementation of a new approach" was published as MTD Ltd Publication 89/104. However, in the absence of any significant advances in some of the material prepared during the course of the programme, selected reports, such as this one on probability-based fatigue inspection planning, are being published separately.

The project leading to this report was undertaken under contract to UEG (and transferred to MTD Ltd) by Dr H O Madsen of Det norske Veritas. The Project Manager responsible for its publication was Mr R W Barrett.

The original project was funded by the following participants:

American Bureau of Shipping

Britoil plc

British Gas plc

BUE Group

Comex Houlder Ltd

Conoco (UK) Ltd

The Department of Energy (UK)

Det norske Veritas

Earl & Wright Ltd

Elf UK plc

Exxon Production Research Company

Harwell Laboratory

McAlpine Sea Services Ltd

Marathon Oil Company

Maersk Olie og Gas AIS

Minerals Management Service, US Department of the Interior

Norwegian Petroleum Directorate

OSEL Group

Petroleo Brasileiro S.A.

Phillips Petroleum Company UK Ltd

SonSub Services Ltd

Joint Swedish Group

US Coast Guard

Wimpey Offshore

Acknowledgement

MTD Ltd wishes to acknowledge Mr S Walker of SLP Engineering Ltd, Mr N D P Barltrop of Atkins Oil and Gas Engineering and Dr M Wall of AEA Petroleum Services for their technical assistance in finalising the text of this report.

Li	ist of illustrations	4	
Li	List of tables		
Su	ummary	5	
1.	Introduction to the probabilistic approach	6	
2.	Review of current data on the reliability of inspection methods	. 8	
3.	The case study		
	3.1 Deterministic S-N fatigue analysis	11	
	3.2 Probabilistic S-N fatigue analysis	15	
	3.3 Probabilistic fracture mechanics fatigue study	19	
	3.4 Effect of inspection procedures	22	
4.	Appraisal of the limitations of the analysis	32	
Re	References		
Bi	Bibliography		

List of ill	ustrations	
Figure 1	Probability of detection curves	10
Figure 2	Calculation of influence coefficient	13
Figure 3	Stress variation through thickness	13
Figure 4	Department of Energy T-curve	14
Figure 5	Reliability index for hot spot 1 and 2 as a function of years of service, based on fracture mechanics	16
Figure 6	Alternative treatments of subjective probabilities in reliability index calculation	18
Figure 7	Probability density function for crack size at various times	19
Figure 8	Geometry function for hot spot 1 and 2	21
Figure 9	FORM results – probabilistic fracture mechanics fatigue study	23
Figure 10	Comparison of probabilistic S-N fatigue analysis and probabilistic fracture mechanics fatigue analysis	23
Figure 11	Comparison probabilistic fracture mechanics study – detailed and simplified stress range distribution uncertainty	24
Figure 12	Updating probability density function of crack size when no crack is detected	26
Figure 13	Updating probability density function of crack size when no crack is detected in several successive inspections	26
Figure 14	Updating probability density function of crack size when a crack is detected and measured, but not repaired	27
Figure 15	Updated first-order reliability index after magnetic particle inspections with no crack detection	28
Figure 16	Updated first-order reliability index when the magnetic particle inspections are optimised	29
Figure 17	Updated first-order reliability index after visual inspection with no crack detection	30
Figure 18	Updated first-order reliability index when the visual inspections are optimised	31
Figure 19	Updated first-order reliability index after repair of a 4-mm crack after 20 years	31
List of ta	bles	
Table 1	The directional distribution of wave occurrences	12
Table 2	The sea scatter diagram	12
Table 3	Deterministic fatigue life (in years)	15
Table 4	Sources of uncertainty and their importance	17

23

Table 5

Importance factors

1. INTRODUCTION TO THE PROBABILISTIC APPROACH

Until now, structural reliability methods have been mainly applied to individual failure modes of single elements in a structure. In recent years, an increased interest in system reliability has arisen. It is now possible to compute failure probabilities for general systems — the difficult, and as yet not fully-solved, part is to model a structure with its failure modes as a system in reliability analysis terms. The objectives of this study were:

- To demonstrate the applicability of probabilistic methods to inspection planning
- To ascertain the importance of the principal input parameters for the probabilistic analysis and the sensitivity of the results to changes in these input parameters
- To investigate the effect of the use of different inspection techniques on the perceived reliability of a structural component
- To identify shortcomings in currently available probabilistic methods applied to real structures.

The study relates to the inspection of existing platforms, and it does not cover cases where, during design, an initial inspection plan is decided upon, together with materials, dimensions, etc.

The use of probabilistic methods in structural design is growing rapidly. There is now a general agreement on the approach behind the use of probabilistic methods in decision making: uncertainty modelling tools are accepted and unified. In addition, numerical techniques have been developed to efficiently compute failure probabilities and sensitivity factors. Such computer programs are now commercially available, and they are easily accessible to engineers. A general overview and introduction to the probabilistic approach to structural design is presented here, while a more detailed account of the available methods is presented in Madsen $et\ al^{(1)}$.

A probabilistic approach is applied to different aspects of design. Probabilistic methods are used for the determination of safety factors in structural codes and technical standards. The first such analysis was performed for the 1974 Canadian Standards Association Code, and since then almost all major codes for landbased and offshore structures have been through a formal calibration process. In recent years, probabilistic methods have also been directly used as a design tool, particularly to examine severe and rare failure modes, structures with severe failure consequences and for structures which are produced in large numbers. Very recently, the probabilistic method has been further developed to incorporate new information becoming available after the design process. Such information may become available during fabrication (e.g. compliance control of materials, and from service experience). Inspection and monitoring, as well as proof loading tests, provide important additional information. With the additional information, some of the uncertainty present at the design stage is removed, and improved decisions on repair, strengthening, inspection plan and change of use can be made. This is generally not possible to nearly the same extent using deterministic methods. Updating of design methods may be required, for example in bridge design, where loads may increase if heavier vehicles are subsequently allowed.