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Summary 

This Report presents an investigation ofthe commonly ignored effect of chord wall flexibility 
at brace connections on the behaviour of oil production jacket structures. 

It considers the effects on the in-plane deflections, axial forces, bending moments, brace 
buckling and natural frequencies of three 100 m tall vertical plane frames. The effects of out-
of-plane loading and joints with braces in more than one plane were outside scope of the study. 

Results from conventional analysis, in which the braces are extended to connect rigidly with 
the chords at their centre line intersection points, are compared with other analyses in which 
the joints are represented by a stiffness matrix. Approximate 'hand' methods for assessing 
the effect of joint flexibility on other structures are suggested. 

Notation 

A 
A 
B 
C 
d 
D 
e 
ep 
E 
f 
F,f 
g 
G 
H 
H 
I 
k 
K,k 
L 
Lb 
Le 
M 
M 
P 
Pcrit 
t 
t 
T 
T 
u,v 
x,y,z 
x 
x 
X 

X,Y,RZ 
a 
P 
y 
5 
5 
V 
e 
V 

a 
0 
^ 

, ^ 

measure of chord wall bending stiffness/brace bending stiffness (End 1) 
cross-sectional area 
measure of chord wall bending stiffness/brace bending stiffness (End 2) 
compressive forces 
diameter of braces 
diameter of chords 
eccentricity of brace intersections on chord centre line 
eccentricity of brace intersections perpendicular to chord centre line 
Young's Modulus 
flexibility 
flexibility matrix 
brace-brace gap 
modulus of rigidity 
height of wave 
equilibrium matrix 
inertia 
stiffness 
stiffness matrix 
length 
length (between chords) 
length (effective) 
moment 
mass matrix 
force 
7r2EI/L2 
brace thickness 
time 
chord thickness 
tensile force 
lengths 
lengths of co-ordinates 
response 
vector of displacements of nodes on a structure 
vector of accelerations of nodes on a structure 
nodal freedoms in plane frame analysis 
chord wall rotational stiffness 
chord wall rotational stiffness 
brace-chord angle 
deflection 
change 
reduction factor on bending stress 
angle or rotation 
Poisson's Ratio 
stress 
angle or rotation 
brace direction freedom 
frequency 
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Abstract of report, results and conclusions 

INTRODUCTION 

Jacket type offshore structures are conventionally analysed as frames with members connected 
at rigid joints. 

In fact the joints are not rigid. 

This report is concerned with the errors in deflections, nominal stresses, buckling load and 
natural frequencies involved in assuming rigid joints. The nominal stress excludes any stress 
concentration factor. 

The study is limited to in-plane effects in vertical frames. 

SCOPE OF WORK 

A method was developed for usingjoint flexibility data, including the important brace to brace 
coupling terms, within a jacket analysis. 

A number of jacket frames were then analysed both conventionally and with flexible joints. 

The results were compared numerically and qualitatively. Recommendations were made con­
cerning analysis and design. 

THE ANALYSIS 

Stiffness matrices representing brace-chord and brace-brace in-plane connectivity, for various 
tubular joints, were calculated from flexibility data made available by Professor Fessler O of 
Nottingham University. The data in the form of flexibility matrices covered the required range 
of T-joints but only the standard D/T = 25.3, d/D = 0.53 K-joints. To estimate the required 
matrices for the other K-joints it was necessary to obtain flexibility ratios from the T-joints and 
to apply those to the available K-joint values. A YT-joint with D/T = 50.6 and d/D = 0.53 was 
also available. 

Three structures representative of North Sea jacket frames were each analysed with seven 
different types of joint. 

Structure 1 Structure 2 Structure 3 

Main chords were 1700 x 30; inclined braces 900 x 25; 
horizontal braces 750 x 25. 
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